1、为了达到降低接地网接地电阻之目的,首先需要从理论上研究降低接地电阻的方法。由公式R=/C 可以看出,降低接地电阻有以下两种途径,一是增大接地体几何尺寸,以增大接地体的电容 C;二是改善地质电学性质,减小地的电阻率 和介电系数。下面分别讨论降低接地电阻的一些方法。1、增大接地网面积由上面接地电阻的物理概念,依据式(2.10),大地电阻率和介电系数不容易改变,而接地电阻 R 与接地网电容 C 成反比:从理论上分析,接地网电容 C 主要由它的面积尺寸决定,与面积成正比,所以接地网面积与接地电阻成反比。减小接地网接地电阻,增大接地网面积是可行途径。一个有多根水平接地体组成的接地网可以近似地看成一块孤立
2、的平板,借用平 板接地体接地电阻计算公式 2.11,当平板面积增大一倍时,接地电阻减小 29.3%。2、增加垂直接地体依据电容概念,增加垂直接地体可以增大接地网电容。当增加的垂直接地体长度和接地网长、宽尺寸可比拟时,接地网由原来的近似于平板接地体趋近于一个半球接地体,电容会有较大增加,接地电阻会有较大减小。由埋深为零半径为的圆盘和半径为的半球电容之比rr 可得,接地电阻减小。但是对于大型接地网,其电容主要是由它的面积尺寸决定,附加于接地网上有限长度()的垂直接地体,不足以改变决定电容大小的几何尺寸,因而电容增加不大,亦接地电阻减小不多。所以大型接地网不应加以增加垂直接地体作为减小接地电阻的主要
3、方法,垂直接地体仅作为加强集中接地散泄雷电流之用。3、人工改善地电阻率在高电阻率地区采用人工改善地电阻率的方法,对减小接地电阻具有一定效果。例如,对于一个半径为的半圆球接地体而言,其接地电阻的 50%集中在自接地体表面至距球心 2的半圆球内,如果将至 2间的土壤电阻率降低,可使接地电阻大大减小。设原地电阻率为2,将至2范围内的电阻率为2的土壤用低电阻率的材料1置换,则半圆球接地体的接地电阻为:X=(1+2)/4r置换前的接地电阻 RX 为:RX=2/2rR 与 RX 之比为:R/RX=(1+2)/22当12,上式改写为:R=RX/2=2/4r故接地电阻减小的百分数为%。另外由式可以看出,用低电
4、阻率的材料置换半球附近高电阻率的土壤,相当于将半球接地体的半径由增大到,由于接地体几何尺寸的增加,而使接地电阻减小。4、深埋接地体在地电阻率随地层深度增加而减小较快的地方,可以采用深埋接地体的方法减小接地电阻。地的电阻率随深度而减小的规律,往往在达到一定深度后,地电阻率会突然减小很多。因此利用大地性质,深埋接地体后,使接地体深入到地电阻率低的地层中,通过小的地电阻率来达到减小接地电阻的目的。对于地电阻率随地层深度的增加而减小不大的地方,由于地电阻率变化不大,增加接地网的埋深只是增大接地网的电容。利用电容的概念,电容具有储藏电场能量的本领,它所储藏的能量,不是储藏在极板上,而是储藏在整个介电质中
5、,即整个电厂中:介电质中的能量密度,既与介电系数有关,又与电场的分布有关,因此,比起接地网的几何尺寸小得多的有限埋深,所增加的储藏能量的介质空间极为有限;在有限空间中的能量密度又小,储藏的总能量也就增加不多,即电容增加不大,所以对减小接地电阻作用不大,不宜采用深埋接地体的方法减小接地电阻。深埋接地体和敷设水下接地网可以大大降低直流电阻,但对降低交流电阻作用不大,故国军标不推荐使用该法。但结合基地航天测试实际情况,主要是低频信号,此法简单,效果明显,可以使用。5、敷设水下接地网在有适宜水源的地方敷设水下接地网,由于水的电阻率比地电阻率小的多,可以取得比较明显的减小接地电阻的效果。而且敷设水下接地
6、网施工比较简便,接地电阻比较稳定,运行可靠,但应注意水下接地网距接地对象的距离一般不大于。6、利用自然接地体充分利用混凝土结构物中的钢筋骨架、金属结购物,以及上下水金属管道等自然接地体,是减小接地电阻的有效措施,而且还可以起引流、分流、均压作用,并使专门敷设的接地带的连接作用得到加强。雷电保护接地接地是避雷技术最重要的环节,不管是直击雷、感应雷或其他形式的雷,避雷工作的最终都是把雷电流送入大地。储存雷能量为人类造福,目前科技还达不到,因此没有合理而良好的接地装置是不可能谈及防雷的。所以说设计、施工好高标准的接地系统是防雷工作的重中之重。过去讨论接地的时候,总是把讨论的焦点放在要求接地电阻小于多少欧姆上。长期以来,人们有一个错觉,认为接地电阻越小避雷效果就越好,被保护的对象就安全。当然电阻越小散流越快,雷击的高电位保留时间越短,危险性越小,其跨步电压、接触电压产生的机遇也就越小。但是,近十几年来的实践证明,与其说接地电阻值重要,不如说接地装置的结构更合理、重要。现在的城市,在一座建筑物内有许多不同性质的电气设备,需要多种接地装置,如避雷接地、电气安全接地、交流电源工作接地、通信及计算机系