收藏 分享(赏)

基于EMD-Hilbert...降维的电机故障信号特征提取_张能文.pdf

安全生产视频网
上传人:爱知识的人 文档编号:255835 上传时间:2023-05-05 格式:PDF 页数:3 大小:1.77MB
下载 相关 举报
基于EMD-Hilbert...降维的电机故障信号特征提取_张能文.pdf_第1页
第1页 / 共3页
基于EMD-Hilbert...降维的电机故障信号特征提取_张能文.pdf_第2页
第2页 / 共3页
基于EMD-Hilbert...降维的电机故障信号特征提取_张能文.pdf_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、工业控制计算机2023年第36卷第1期基于 EMD-Hilbert 和主成分降维的电机故障信号特征提取张能文1姜天尚2杨凯铭1承敏钢1江冰2(1江苏新道格自控科技有限公司,江苏 无锡214433;2河海大学物联网工程学院,江苏 常州213022)摘要:电机是旋转机械的驱动机,电机故障将导致整套设备系统或生产线瘫痪。故障信号特征提取是电机故障诊断的基础,提出了一种基于EMD-Hilbert包络谱分解技术的旋转电机故障特征提取方法,利用EMD将原始信号分解成若干个固有模态函数余量,利用Hilbert包络谱法提取故障特征,通过主成分分析方法实现故障特征的降维,提高故障信号特征提取的精度和。最后通过M

2、CDS平台采集数据进行故障特征识别,实验结果表明该方法的准确性和有效性,为旋转电机故障特征提取和识别提供了一种可靠的方法。关键词:故障特征;经验模态分解;旋转电机;包络谱电机作为旋转机械的驱动机构,一旦电机发生故障其风险将不可估量,因此,开展旋转机械电机的故障诊断意义重大1。传统电机故障诊断是通过提取电机电磁、电压、电流、温度、振动等信号参数,利用数据转换得到电机故障特征,进而判断电机故障的故障类别2。近年来,随着人工智能、数据挖掘技术的发展,从海量的数据信息中通过数据挖掘技术提取能够表征具体电机故障的特殊数据信息,再利用数据分析、深度学习和模式识别等实现电机故障诊断成为可能3。文献4提出了一

3、种分析感应电机空间与时间相关的电磁特性机理的有限元分析方法,实现电机转子不对称性的缺陷的检测;文献5使用FKM法预测电机关键部件的疲劳寿命,发现磁极和磁轭的结合处是转子最危险位置;文献6采用有限元方法分析了环境温度和热粘弹性滞回对电机定子和无衬套内衬热失效的影响;文献7提出了一种永磁同步电机驱动系统,通过对零序电压分量检测实现电机的缺相故障诊断;文献8通过红热外成像检测技术诊断励磁感应电机中的各种故障状态;文献9提出了从电机声音中分离出混沌信号分量分析电机故障特征方法;文献10提出了一种基于极点对称模态分解和快速谱峭度联合分析的诊断方法,通过进行带通滤波、解调分析在平方包络谱中分析出电机故障特

4、征。文献11提出了基于频域振动和电流信号的电机在线诊断系统,针对采用插值和外插策略实现支持向量机的数据分类,检测感应电机的电气故障;文献12提出了基于经验小波变换的CNN感应电机故障诊断系统,使用卷积神经网络从灰度图像中自动提取鲁棒特性,可以有效地诊断感应电机中的故障;文献13提出了变分模态分解方法,计算分解固有模态分量的能量熵,分析电机故障特征的诊断方法;文献14提出了基于卷积神经网络框架技术实现电机故障检测。1基于EMD-Hilbert的电机故障提取1.1 EMD基本原理经验模态分解(Empirical Mode Decomposition,EMD)是美国国家宇航局Huang等人于1998

5、年提出的一种自适应信号分析技术。经验模态分解将电机振动信号分解成若干个固有模态函数(Intrinsic Mode Function,IMF)和没有频率成分的残余量,IMF可以准确捕捉信号中的特征信息。任何复杂信号都可以表征为若干个IMF相互交叠混合而成,并且在任意特征时间尺度,一个复杂信号都会包含若干个IMF。一般的,任何振动信号都是复杂信号且存在多个极大值点和多个极小值点。通过极大值点和极小值点可以构建振动信号的波动线,每一个波动线就相当于振动信号数据的数据原子。IMF通过平稳化方式处理电机振动信号,按照振动幅值逐层分解波动信号,将其拆分成若干数据集,每个数据集包含的信号特征不相同,并能够进

6、行信号特征识别。给定一个复杂的信号x(t),其IMF方法分解如下所示:1)找出信号x(t)的所有极值点;2)用插值法对极大值点形成上包络Emax(t),对极小值形成下包络Emax(t);3)计算均值mo(t)=(Emax(t)+Emin(t)/2;4)抽离细节ho(t)=x(t)-mo(t),得到第一个IMF,记c1(t)=h1k(t);5)对残余的ro(t)重复步骤1)4)的操作。1.2 Hilbert变换原理Hilbert变换包络分析是一种有效的数据处理方法,本质是将原始信号与一段数据做卷积,相当于原始数据的过滤器。EMD方法通过对电机振动信号不断剥离低幅值信号,将其分解为若干个IMF和没有频率成分的残余量,对于得到的任一IMF通过Hilbert变换计算出其存在的瞬时频率与幅值。对固有模态函数Ci(t)作Hilbert变换如式(1)所示:Hci(t)=1-ci(t)t-dt(1)经过Hilbert变换构造对应的解析信号zi(t),如式(2):zi(t)-ci(t)+jHci(t)=ai(t)ei(t)(2)从而得到相应的幅值函数,即E包络谱ai(t)和相位函数i(t),如式(3)和

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 安全资料 > 安全生产论文 > 综合安全论文

copyright@ 2010-2025 安全人之家版权所有

经营许可证编号:冀ICP备2022015913号-6