1、步进电机是将电脉冲信号转变为角位移的开环控制电机,应用极为广泛。在非超载的情况下,电机的转速和停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机是一种感应电机,它的工作原理是利用电子电路,即驱动器,将直流电变成分时供电的多相时序控制电流。步进电机虽然由直流电流供电,但是不能理解为直流电机,直流电机是将直流电能转换为机械能
2、的动力电机,而步进电机是将电脉冲信号转变为角位移的开环控制电机。闭环步进电机:除了开环步进电机,还有在电机尾部添加了编码器,可以实现闭环控制的步进电机。步进电动机的闭环控制是采用位置反馈和(或)速度反馈来确定与转子位置相适应的相位转换,可大大改进步进电动机的性能。没有失步现象的伺服系统。闭环步进电动机的优势:1.高速响应,相对于服电机,闭环步进对定位指令具有非常强的跟随性,因此定位时间非常短。在频繁启停的应用中,可显著缩短定位时间。2.比普通伺服产生更大的扭矩。弥补普通步进系统失步、低速振动不足。3.在 100%负载情况下也可可产生高扭矩,无失步运行,无需像普通步进系统一样考虑扭矩损失等问题。
3、4.应用闭环驱动,效率可增到 7.8 倍,输出功率可增到 3.3 倍,速度可增到 3.6 倍。可得到比开环控制更高的运行速度,更稳定、更光滑的转速。5.步进电机停止时会完全静止,无普通伺服的微振动现象。需要低成本、高精度定位的场合,可取代通用伺服系统的应用。伺服电机也叫执行电机,可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。与步进电机原理结构不同的是,伺服电机由于把控制电路放到了电机之外,里面的电机部分就是标准的直流电机或交流感应电机。伺服电机靠脉冲来定位,伺服电机接收到 1 个脉冲,就会旋转 1 个脉冲对应的角度。电机每旋转一个角度,编码器都会发出对应数量的反
4、馈脉冲,反馈脉冲和伺服驱动器接收的脉冲形成闭环控制,这样伺服驱动器就能够很精确的控制电机的转动,从而实现精确的定位。伺服电机的控制:一般工业用的伺服电机都是三环控制,即电流环、速度环、位置环,分别能反馈电机运行的角加速度、角速度和旋转位置。芯片通过三者的反馈控制电机各相的驱动电流,实现电机的速度和位置都准确按 照 预 定 运 行。交 流 伺 服 具 备 额 定 转 速 下 力 矩 恒 定 的 特 点,常 见200W,400W 低中惯量交流伺服额定转速为 3000rpm,最高转速 5000rpm,转速高。力矩与电流成正比,可以工作在力矩模式,例如锁螺丝,压端子等需要恒定力矩的场合。交流伺服工作噪
5、音振动极小,发热低。同体积下电机惯量转子惯量小,400W 伺服惯量仅相当于 57 基座 2NM 步进电机的转子惯量。伺服具备短时间过载能力,选型时需考虑加减速时电机过载倍数。伺服采用闭环控制,同闭环步进一样存在位置跟踪误差。伺服需要调试才能使用。步进和伺服电机的原始扭矩不够用的情况下,往往需要配合减速机进行工作,可以使用减速齿轮组或行星减速器。舵机(servo)国人起的俗称,是一类直流伺服电机,最先是用于小型航模,现在用于小型机器人关节。从结构来分析,舵机包括一个小型直流电机,加上传感器、控制芯片、减速齿轮组,装进一体化外壳。能够通过输入信号(一般是 PWM 信号,也有的是数字信号)控制旋转角
6、度。由于是简化版,原本伺服电机的三环控制被简化成了一环,即只检测位置环。廉价的方案就是一个电位器,通过电阻来检测,高级的方案则会用到霍尔传感器,或者光栅编码器。一般舵机价格低廉、结构紧凑,但精度很低,位置镇定能力较差,能够满足很多低端需求。步进电机应用于低速场合-每分钟转速不超过 1000r/min,最佳工作区间是 150500r/min,(闭环步进可达 1500)。2 相步进电机在 6070r/min容易出现低速共振现象,产生振动和噪音,需要通过改变减速比、增加细分数、添加磁性阻尼器等方式避免。细分精度注意事项,当细分等级大于4 后,步距角的精度不能保证,精度要求高,最好换用相数更多的步进电机或闭环步进、伺服电机。(开环)步进电机与伺服电机的 7 不同:A 控制精度伺服电机控制精度可以根据编码器设置,精度更高;B 低频特性步进电机低频容易振动,伺服电机不会;C 矩频特性步进电机随转速提高力矩变小,所以其最高工作转速一般在1000r/min,伺服电机在额定转速内(一般 3000r/min)内都能输出额定力矩,在额定转速以上为恒功率输出,最高转速可达 5000 r/min;D 过载能力步