1、7 系铝合金的发展历史在 20 世纪 20 年代,德国的科学家研制出 Al-Zn-Mg 系合金,由于该合金抗应力腐蚀性能太差,并未得到产业内应用。在 20 世纪 30 年代初一直到二战结束期间,各个国家在研究中发现,Cu 元素可以提高铝合金的抗应力腐蚀性能。在此,开发了大量 Al-Zn-Mg 系合金,因此忽视了对Al-Zn-Mg 系合金的研究。德、美、苏、法等国在 Al-Zn-Mg-Cu 系合金基础上成功地开发了 7075、B93 和 D683 等合金。目前正广泛应用在航空航天事业上,但是强度、韧性、抗应力腐蚀性能三者之间未能实现最佳组合状态。20 世纪 50 年代,德国科学家公布了具有优良焊
2、接性能的合金AlZnMg1 和 AlZnMg2,引起了人们对 Al-Zn-Mg 系合金的重视。在此段时间,美国学者在 AlZnMg1 合金的基础上,加入了 Zr、Mn、Cr 等元素,研制出了 7004 和 7005 合金,具有优良焊接性和抗应力腐蚀性能,广泛应用于焊接行业。唯一不足的是,工艺性能较差。日本科学家尝试降低合金中 Mg 含量,提高 Zn/Mg 值,研制出了 ZK60 和 ZK61 合金,使合金的焊接性和工艺性能提高,但是降低了很大的强度。同时期内,前苏联也研制出了 1915、1933 合金,强度也是偏低。为了克服强度低的缺点,20 世纪70 年代又研制出 7020 合金,具有高强度
3、,焊接性好的性能。以后,人们把注意力集中在了 Al-Zn-Mg 系铝合金上。20 世纪 80 年代初,美国科学家先后在 7075 合金的基础上,为了解决实际生产中抗应力腐蚀敏感性较高的问题,以及满足某些特殊需要,调整了部分合金元素的含量,发展了许多新型合金。相比之下,国内对 7 系铝合金的研究起步较晚,在 20 实际 80 年代,由东北和北京研究院研制 Al-Zn-Mg 系铝合金。目前主要有 7050、7075、7175 等合金产品。20 世纪 90 年代中期,北京航空材料研究所采用常规半连续铸造法试制出 7A55 超高强铝合金,近几年又研制出强度更高的 7A60合金。而在 Al2Zn2Mg
4、系铝合金的研制上,国内基本都是仿制,很少自行开发。铝合金疲劳的分类疲劳的定义疲劳断裂是由于交变载荷、应力下引起的延时断裂,其断裂应力水平往往低于材料的抗拉强度b,有时甚至低于屈服强度s。一般情况下,疲劳破坏不发生明显的塑性变形,其变形主要是脆性断裂,是一种没有预兆、十分危险的破坏形式,难以检测、预防。铝合金的疲劳,按疲劳破坏原因可分为三类:热疲劳、腐蚀疲劳和机械疲劳。热疲劳铝合金的热疲劳是在交变应力和热应力共同作用下产生的疲劳破坏。外部约束和内部约束是产生热疲劳的两个必要条件,外部约束即阻碍材料自由膨胀,内部约束即产生温度梯度,使材料膨胀,但由于约束从而产生热应力与热应变,经过一定的循环次数,
5、导致裂纹的萌生、扩展。张文孝等研究了 LD8 铝合金的同相和异相热疲劳特性,应用弹塑性断裂力学方法对不同状态下热疲劳寿命进行了探讨。腐蚀疲劳长期在化工行业使用或者海水中使用的金属材料,处于腐蚀的环境中,此外还承受交变载荷作用,与正常环境下的金属材料相比,腐蚀性环境和交变载荷同时作用,会显著降低材料的疲劳性能,从而产生构件的破坏,以至于最终断裂。宫玉辉等研究了不同腐蚀环境对 7475-T7351 铝合金疲劳性能及裂纹扩展速率的影响,发现腐蚀环境对裂纹扩展有较明显的加速作用,但不同环境腐蚀和不同温度对材料的低周疲劳性能影响不大。王成等将不同浓度硅酸钠添加到铝合金中,发现其可以抑制铝合金的点蚀、减少
6、裂纹源,提高铝合金在氯化钠溶液中抗点蚀的能力及腐蚀疲劳寿命,但对铝合金的腐蚀疲劳裂纹的扩展无法抑制。机械疲劳机械零部件在外加应力或者应变作用下将会产生机械疲劳,经长时间工作后,即使所受应力小于材料屈服点,仍然会产生裂纹,或者产生断裂。在循环应力水平较低时,弹性应变起主导作用,此时疲劳寿命较长,称之为高周疲劳,也称应力疲劳;在循环应力水平较高时,塑性应变起主导作用,此时疲劳寿命较短,称之为低周疲劳,也称塑性疲劳。李睿等对 2024-T3铝合金孔板进行了高低周复合疲劳试验,研究发现随着高低周循环次数增大,复合疲劳寿命有显著的降低,并建立了高低周循环次数和应力幅比与高低周复合疲劳寿命之间的关系式,但其只考虑了载荷循环次数对疲劳的影响,没有全面综合其他影响疲劳寿命的因素。疲劳破坏过程及机理金属设备疲劳过程的开始,即疲劳裂纹的萌生称为疲劳源。疲劳源是材料微观组织永久损伤的核心,当裂纹开始萌生后,逐渐长大并与其它裂纹合并,然后形成肉眼可见的宏观裂纹,称为主裂纹,此时裂纹萌生阶段结束。之后,进入裂纹扩展阶段,首先开始稳定扩展,裂纹达到临街尺寸后,随着进一步的交变应力、应变作用下,金属材料无法承受,裂