1、电气控制与PLC,第2章 拖动系统基本控制电路,目的: 学习由电器元件组成的鼠笼式三相交流异步电动机起、停,正反转,多地,多条件控制电路的基本原理;降压起动控制电路;制动控制电路;变极调速。绕线式异步电动机的控制电路;电液控制技术;直流电动机基本控制电路。要求: 领会常用控制电路的设计思想,学会分析基础电路的工作原理,熟记起停、正反转、两地控制等电路的电路结构及特点,并要求能够熟练画出这些电路。,第2章 拖动系统基本控制电路,2.1 电气控制线路图的绘制及分析2.2 全压起动及其主要控制环节2.3 三相交流异步机降压起动控制电路2.4 三相交流异步机制动控制电路2.5 变极调速控制线路2.6
2、绕线式异步电动机的控制电路2.7 电液控制技术2.8 直流电动机基本控制电路,2.1 电气控制线路图的绘制及分析,用以描述电气控制设备电气原理及安装、调试用的工艺性图纸,主要包括电气原理图、电气安装位置图、电气安装接线图和电气安装互连图等。2.1.1 电气线路图2.1.2 电气原理的读图方法,2.1.1 电气线路图,电气线路图: 电气线路图是指描述控制线路接线关系和原理的图纸,分为电气原理图和电气安装接线图。电气原理图的分类:主:强电流通过部分辅:控制、照明、指示电气原理图的绘制规则:主:粗实线辅:细实线 电气符号画法:一般垂直放置,也可以逆时针转动90水平放置。图中电器元件的状态为常态(未压
3、动、未通电),2.1.2 电气原理的读图方法,1、查线读图法(常用方法): 按照由主到辅,由上到下,由左到右的原则分析电气原理图。较复杂图形,通常可以化整为零,将控制电路化成几个独立环节的细节分析,然后,再串为一个整体分析。2、逻辑代数法 用逻辑代数描述控制电路的工作关系。,2.2 全压起动及其主要控制环节,本节主要描述小型电动机的全压起动及其主要控制环节,(电动机的启动方法和原理已由电机课程进行过理论研究)有起停控制、正反转控制电路、其它环节等。 2.2.1 起停控制 2.2.2 正反转控制电路 2.2.3 其它环节1112592826QQ群群,2.2.1 起停控制,手动控制操作方法: 手动
4、合上QS,电动机M工作;手动切断QS,电动机M停止工作。电路保护措施: FU短路保护电路优点:控制方法简单、经济、实用。电路缺点:保护不完善,操作不方便,、自动起停控制,主电路: 三相电源经QS、FU1、KM的主触点,FR的热元件到电动机三相定子绕组。 控制电路: 用两个控制按钮,控制接触器KM线图的通、断电,从而控制电动机(M)启动和停止。 起动过程分析: 合上QS,按动起动按钮SB1KM线圈通电并自锁M通电工作。 KM自锁触点,是指与SB1并联的常开辅助触点,其作用是当按钮SB1闭合后又断开,KM的通电状态保持不变,称为通电状态的自我锁定。 停止按钮SB2,用于切断KM线圈电流并打开自锁电
5、路,使主回路的电动机M定子绕组断电停止工作。,起停控制电路的保护分析,过载保护: 热继电器FR用于电动机过载时,其在控制电路的常闭触点打开,接触器KM线圈断电,使电动机M停止工作。排除过载故障后,手动使其复位,控制电路可以重新工作。短路保护: 熔断器组FU1用于主电路的短路保护,FU2用于控制电路的短路保护。零压保护: 电路失电复上电,不操作起动按钮,KM线圈不会再次自行通电,电动机不会自行起动。KM线圈通电的逻辑表达式:,2.2.2 正反转控制电路,正反转实现的方法:改变电源相序(两根火线对调)。1、正反转基本控制电路: 主电路: KM1主触点接通正相序电源M正转。 KM2主触点接通反相序电
6、源M反转。控制电路: SB1控制正转,SB2控制反转,SB3用于停止控制。 KM的常闭触点用于互锁控制,即使在接触器故障情况下,也可以保证不发生主电路短路现象。,2、按钮联锁功能,图2.2.3的电气操作只能按正、停、反或反、停、正的方式进行操作。电路不能正反、反正操作控制,给设备的操作带来诸多不便。 图2.2.4使用按钮连锁,首先使用和常开触点联动的常闭触点的断开对方支路线圈电流,再利用常开触点的闭合接通通电线圈电流。可以很方便地使电动机由正转进入反转,或由反转进入正转。,3、工作台自动循环控制,工作台移动机构示意 在工作台的移动机构和固定部件上分别装置的行程开关和档铁(压动行程开关用),当移行机构运动到某一固定位置时,压动行程开关,取代人手接动按钮的功能,实现自动循环控制。右图SQ1用于正转控制,SQ2用于反转控制,SQ3、SQ4的常闭触点用于极限位置的保护。,综合,电气原理图中电器元件各部分符号与实际位置无关,可根据原理,将电气符号画在任何需要的电路位置。,2.2.3 其它环节,1、点动(在长动基础上的点动) 用途:适用于电动机短时间调整的操作。 按钮操作:SB3常闭触点用来切段自